PIC单片机16F84的内部硬件资料 (2)

6定时器/计数器TMRO
  PIC单片机16F84中有一个定时器,此定时器也可用于计数,因此称为定时器/计数器,符号为TMRO。TMRO可用于定时控制、延时、对外部事件计数和检测等场合。TMRO是一个8位增量(加1)计数器。它在数据存贮器中的地址为01。定时器所用的时钟源可以是内部系统时钟(OSC/4,即四倍振荡周期),也可以是外部时钟。若TMRO对内部系统时钟的标准脉冲系列进行计数时,就成为定时器;对外部脉冲进行计数时TMRO就成为计数器。
  不管是定时还是计数方式,TMRO在对内部时钟或对外部事件计数时,都不占用CPU时间,除非TMRO溢出,才可能中断CPU的当前操作。可见,定时器是单片机16F84中效率高且工作灵活的部件。
  为了扩大定时或计数的范围,配合TMRO的使用,还有一个可编程预定标器。此定标器实际上是一个可编程分频器。
  TMRO的内部结构示意图如附图所示。其工作方式由数据存储器中的项选寄存器OPTION控制。OPTION是一个可读/写的寄存器,如附表所示。它含有配置TMRO/WDT预定标器、外部INT中断、TMRO等的各种控制位。
  TMRO的定时、计数方式是由OPTION寄存器中的D5(即TOCS位)确定。当TOCS=0时,工作于定时器方式;当TOCS=1时,工作于计数器方式。作定时器时,每个指令周期加1(无预分频时);而作计数器时,则在每个RA4/TOCKI引脚上电平变化时加1。OPTION寄存器的位4(TOCS位)决定外部脉冲的触发方式,当TOSE=1,下降沿触发;TOSE=0,上升沿触发。当TMRO内部计数器发生计数溢出(从FFh→00h)时,溢出位送入中断控制寄存器INTCON。
  由附图可知,预分频器也是一个8位计数器。其分频数是由OPTION寄存器中的PS2~PS0三位值来改变。分频数可以是以下8种之一:1∶1、1∶2、1∶4、1∶8、1∶16、1∶32、1∶64和1∶128。
  当分频器用于TMRO时,所有写入TMRO的指令,如CLRF 1、MOVWF 1、BSF 1、等都将对预分频器清零。需要注意的是,预分频器是不能读写的。此分频器可用于TMRO,也可用于WDT,其切换由软件控制。为了避免意外的芯片复位,当需要切换时,必须执行相应的一段程序,以下是从WDT切换到TMRO时所需执行的程序:
  CLRWDT     ;
             对WDT和预定标器清零
  BSF   STATUS,RP0 ;选中存储体1
  MOVLW B′xxxx0xxx′ ;PSA=0,选中TMRO
  MOVWF OPTION   ;送入OPTION寄存器
  BCF  STATUS,RP0 ;复位存储体0

  成都 卫东

   7 延时和定时
  在设计单片机应用系统时,经常会遇到需要使某一过程(如加温、加压等)持续一段时间的情况,如连续加压1分钟,通电2分钟等。单片机如何正确确定这段时间呢?这里可通过两种方式,即延时和定时来实现。试看下例。
  在应用系统中要求PIC16F84的RAO端控制一个发光二极管按一定频率闪亮,可通过右图的电路来实现。同时还必须为16F84编制一个程序。由电路图可知,要使发光二极管LED按一定的频率闪亮,只要使RAO端输出一个变化的高→低→高……电平即可。由此设计出如下的源程序(清单1):
  list P=16F84,F=INHX8M
  ;……
     ORG   0
     MOVLW 0 ;主程序开始
     TRIS  5   ;置RA口为输出
     BCF   5,0   ;RA口0位清零
  LOOP:CALL  DELAY;闪动延时
     COMF 5   ;RA口求反,亮—灭交替
     GOTO LOOP   ;循环
  ;……
  DELAY      ;以下为延时子程序
      MOVLW  D′50
      MOVWF   8
  LOOP1:MOVWF   9
  LOOP2:DECFSZ   9,F
      GOTO   LOOP2
     DECFSZ   8,F
     GOTO    LOOP1
  RETLW       0
  由清单1可知,当主程序开始时,首先将工作寄存器W清零,然后将W寄存器的内容送TRISA寄存器,使其清零,以设置RA口为输出。接着又将RA口的第5位清零,使LED开始时处于熄灭状态。随之持续一段时间,即执行延时子程序,再将RA口取反,变为高电平输出,LED发光,再延时,又使RA口取反,LED熄灭……。这样,LED就一暗一亮,持续交替进行。
  在这里,使LED亮、暗持续一段时间是通过单片机执行延时子程序DELAY来实现的。此延时程序的核心就是让单片机的CPU反复执行使寄存器内容减1的指令DECFSZ。即将十进制数50分别装入通用寄存器F8、F9,以进行50×50=2500次的减1操作。如果执行一次DECFSZ指令需1个指令周期(跳转时需2个周期),若设振荡频率为100kHz,即指令周期为40μs,则延时时间为2500×40=100000μs=100ms,即01秒。实际上还略为大些。此延时时间已超过人眼的视觉保留时间。因而能看清LED的明、暗交替变化。
  如果我们需要更长的延时时间,可仿照上例,装入更大的数或引入多重循环。因此,在原则上,延时时间可根据需要任意延长。
  不过,采用延时程序来持续某一过程的方式有缺陷。延时就是使CPU在某几条指令上“转圈”,延时越长,“转圈”数越多,这时,CPU不能再去执行其它操作,如监视温度、湿度等。这在某些实时控制系统中,不允许这样做。为此,在单片机16F84中,专门设置了一个“闹钟”——定时器TMR0。需要某过程延续多长时间,可将其“拨入”TMR0,到时它会发生“中断”,告诉CPU定时时间到。要CPU暂停其它工作,转过来执行“中断子程序”,完成输出开、关信号之类的任务后,再回去执行其中断的工作。这样,就使CPU的工作效率提高。因而,延时的使用有局限性,采用定时器TMR0则可用于各种场合中。 

8 中断
  PIC单片机16F84具有实时处理功能,能对外界异常发生的事件由中断技术作及时处理。
  当单片机的CPU正在处理某事件时,若外部发生了某一事件(如定时器溢出、引脚上电平变化),请求CPU迅速去处理,于是CPU就暂时中止当前的工作,转去处理所发生的事件。中断处理完该事件后,再回到原来被中止的地方,继续执行原来的工作,如图1所示。实现这种功能的部件称为中断系统。产生中断的请求源称为中断源。中断源向CPU提出的处理请求,称为中断请求或中断申请。CPU暂时中断自身的事务,转去处理事件的过程,称为CPU的中断响应过程。对事件的整个处理过程,称为中断服务(或中断处理)。处理完毕,再回到原来被中止的地方,称为中断返回。
  PIC16F84芯片有4种中断源,其逻辑电路如图2所示。

  9中断控制
  中断主要由中断控制寄存器INTCON(图3)来控制。INTCON是一个可读/写寄存器,含有定时器TMRO溢出、RB口的变化和外部INT引脚中断等各种允许控制和标志位。
  全局中断允许位GIE(D7)置1,将开放所有未被屏蔽的中断,如将该位清零,将禁止所有的中断。在响应中断时,GIE位将被清零,以禁止其它中断,返回的断点地址被压栈保护,接着把中断入口地址0004h装入程序计数器PC。在中断服务程序中,通过对中断标志位进行查询,确定中断标志位必须在重新开放中断之前用软件清零,以避免不断地中断申请而反复进入中断。
  (1)INT中断。RBO/INT引脚上的外部中断由边沿触发,当INTEDG位(OPTION寄存器第6位)被置1时,选用上升沿触发,如该位被清零,则由下降沿触发。当检测到引脚上有规定的有效边沿时,便把INTE位(INTCON的D4位)置1。在重新开放这个中断之前,必须在中断服务程序中对INTE位清零。  (2)TMRO中断。当定时器TMRO的计数器计满溢出(即由FFH变成00H)时,硬件自动把TOIF(INTCON的D2位)置1。其中断可以通过对TOIE(INTCOND的D5位)置1或清零来控制该中断是否开放。
  (3)PORTB口引脚电平变化中断。在PORTB口的D7~D0引脚上一旦有电平变化,就会把RBIF(INTCON的D0位)置1。这个中断可以通过对RBIE(INTCON的D3位)置1或清零来控制该中断是否开放。
  (4)中断的现场保护。在发生中断时,只有返回断点的地址被压栈保护。若用户还希望保护关键的寄存器(如W寄存器和STATUS寄存器)。这需要由软件来实现。有关中断的现场保护,请参看本报第15期有关PIC单片机指令识读中的实例。


相关